How Kubernetes Reinvented Virtual Machines (in a good sense)

There are lots of posts trying to show how simple it is to get started with Kubernetes. But many of these posts use complicated Kubernetes jargon for that, so even those with some prior server-side knowledge might be bewildered. Let me try something different here. Instead of explaining one unfamiliar matter (how to run a web service in Kubernetes?) with another (you just need a manifest, with three sidecars and a bunch of gobbledygook), I'll try to reveal how Kubernetes is actually a natural development of the good old deployment techniques.

If you already know how to run services using virtual machines, hopefully, you'll see that there's not much of a difference in the end. And if you're totally new to operating services at scale, following through the evolution of the technology might help you as well with the understanding of contemporary approaches.

As usual, this article is not meant to be comprehensive. Rather it's an attempt to summarize my personal experience and how my understanding of the domain has been forming over the years.

Read more

Service Discovery in Kubernetes: Combining the Best of Two Worlds

Before jumping to any Kubernetes specifics, let's talk about the service discovery problem in general.

What is Service Discovery

In the world of web service development, it's a common practice to run multiple copies of a service at the same time. Every such copy is a separate instance of the service represented by a network endpoint (i.e. some IP and port) exposing the service API. Traditionally, virtual or physical machines have been used to host such endpoints, with the shift towards containers in more recent times. Having multiple instances of the service running simultaneously increases its availability and helps to adjust the service capacity to meet the traffic demand. On the other hand, it also complicates the overall setup - before accessing the service, a client (the term client is intentionally used loosely here; oftentimes a client of some service is another service) needs to figure out the actual IP address and the port it should use. The situation becomes even more tricky if we add the ephemeral nature of instances to the equation. New instances come and existing instances go because of the non-zero failure rate, up- and downscaling, or maintenance. That's how a so-called service discovery problem arises.

Service discovery problem

Service discovery problem.

Read more

Service Proxy, Pod, Sidecar, oh my!

How services talk to each other?

Imagine you're developing a service... For certainty, let's call it A. It's going to provide some public HTTP API to its clients. However, to serve requests it needs to call another service. Let's call this upstream service - B.

Service A talks to Service B directly.

Obviously, neither network nor service B is ideal. If service A wants to decrease the impact of the failing upstream requests on its public API success rate, it has to do something about errors. For instance, it could start retrying failed requests.

Read more